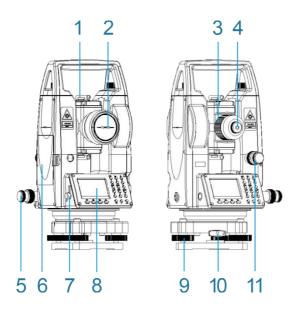
MENU

1.	PRECAUTIONS		
2.	PART NAMES		3
3.	OPER	ATION	4
	3.1	Keys	4
	3.2	Abbreviation	5
4.	ANGL	E MEDASUREMENT	6
	4.1	Angle	6
	4.2	HSet	6
5.	DISTA	NCE MEASUREMENT	7
	5.1	Distance	7
	5.2	Stake Out (S.O.)	7
	5.3	Mode	8
6.	AXES	STAKE-OUT	9
	6.1	Stake Out of One Side on the Axes	9
	6.2	Stake Out of Any Point	11
7.	QUIC	K SETTING	13
	7.1	Laser Plummet	13
	7.2	Laser Pointer	14
	7.3	Compensation on X	14
	7.4	Distance Setting	14
	7.5	Backlight and Sound	14
8.	SETTI	NG	15
	8.1	Unit	15
	8.2	Angle	15
	8.3	Distance	16
	8.4	PPM	16

	8.5	Power	16
9.	CALIBR	ATION	17
	9.1	Calibrate i Angle	17
	9.2	Correction of Additive Constant	18
10.	INFORI	MATION	20
	10.1	Firmware Upgrade	20
	10.2	Factory Mode	21
	10.3	System Information	21
11.	SPECIF	ICATION	22
12.	ERROR	CODE	24

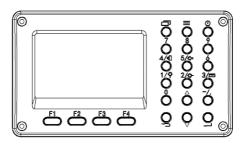
Thank you for choosing multi-functional theodolite NT-023.


Please read the user manual carefully before use.

1. PRECAUTIONS

- Do not collimate the objective lens directly to the sunlight without a filter.
- b. Do not store the instrument in extremely high or low temperature, to avoid the sudden or great change of temperature.
- c. When the instrument is not in use, store it in the case and avoid shock, dust and humidity.
- d. If there is great difference between the temperature in work site and that in store place, you should leave the instrument in the case till it adapts to the temperature of environment.
- e. If the instrument has not been used for a long time, you should remove the battery for separate storage. The battery should be charged once a month.
- f. When transporting the instrument should be placed in its carrying case, it is recommended that cushioned material should be used around the case for support.
- g. For better accuracy, the instrument should be set up on a wooden tripod rather than an aluminum tripod.
- h. Clean exposed optical parts with degreased cotton or less tissue only!
- i. Clean the instrument surface with a woolen cloth after use. If it gets wet, dry it immediately.
- j. Before turning on, inspect the power, functions and indications of the instrument as well as its initial setting and correction

- parameters.
- k. Unless the user is a maintenance specialist, do not attempt to disassemble the instrument by yourself even if you find the instrument abnormal.
- I. Do not aim the laser beam to eyes.
- m. Keep the screen clean. Do not scratch the screen with sharp objects.
- n. This product belongs to the Level II laser products. It fully meet the requirements of:
 - · IEC60825-1:2007
 - · GB 7247.1-2001
- o. Don't staring at the laser beam or aiming the others. The laser is harmful to the eyes.

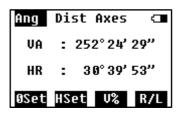

2. PART NAMES

1. Collimator	2. Objective Lens	
3. Focusing Screw	4. Telescope Eyepiece	
5. Horizontal Tangent Screw	6. Battery	
7. RS232 Interface	8. Display Unit	
9. Tribrach	10. Tribrach Lock	
11. Vertical Tangent Screw		

3. OPERATION

3.1 Keys

Keys	Function
	Shift among 3 main functions (ANG/DIST/AXES)
=	Menu
O	Power
1	Number 1/ Shortcut to set the laser plummet
2	Number 2/ Shortcut to set the laser pointer
3	Number 3/ Shortcut to set the compensation on Axis X (N)
4	Number 4/ Shortcut to set distance measurement mode
5	Number 5/ Shortcut to set backlight and sound
6-9,0	Number 6, 7, 8, 9, 0
<u>ے</u>	ESC
4	Enter
▲▼	Move up and down/ Turn page
-/.	Input – or .

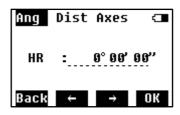

3.2 Abbreviation

VA	vertical angle
НА	horizontal angle
V%	degree or gradient display
HL/HR	horizontal left/right angle
VD	vertical distance
HD	horizontal distance
SD	slope distance
hPa	unit of air pressure: hectopascal
mmHg	unit of air pressure: millimeter of mercury
inHg	unit of air pressure: inch of mercury
m	unit of distance: meter
ft	unit of distance: feet
gon	unit of angle
mil	unit of angle
°C	unit of temperature: degree Celsius
°F	unit of temperature: degree Fahrenheit

4. ANGLE MEASUREMENT

The function of angle measurement covers measuring and displaying vertical and horizontal angles (VA and HL/HR), 0 set, horizontal set (HSet), switching to slope (V%), switching Face Right and Face Left (R/L), etc.

4.1 Angle

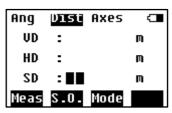


0Set:	Set the current angle to 0°.
HSet:	Input an angle to set as the current
	horizontal angle.
V%:	degree or gradient display
R/L:	Shift Face Left and Face Right.

4.2 HSet

Press HSet to go the screen of setting horizontal angel.

Input a value of the angle to set as the current horizontal angle. And press **OK** to confirm.

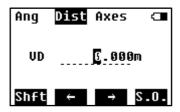


5. DISTANCE MEASUREMENT

The function of distance measurement covers measuring and displaying vertical distance (VD), horizontal distance (HD), slope distance (SD), stake out (S.O.), and setting of measuring mode (Mode), etc.

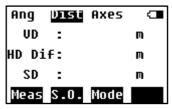
5.1 Distance

Aim at the center of the target prism through the optical eyepiece by adjusting the focus, and press Measto start the distance measurement.



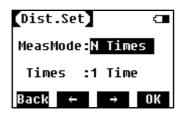
Meas:	Start to measure the distance.
S.O.:	Start to stake out the distance.
Mode:	Set the measure mode

5.2 Stake Out (S.O.)


Input a distance to stake out. It could be a vertical distance, horizontal distance or slope distance, by pressing Shft to shift the

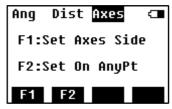
mode.

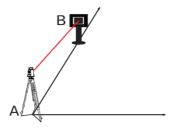
Shft:	shift the distance type to stake out	
←:	delete	
→ :	move right	
S.O.:	Save the input value and continue to	
	stake out.	


Display of Stake Out Result

	The distance difference between the
HD Dif:	current horizontal distance and the
	horizontal distance about to stake out.

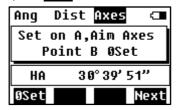
5.3 Mode


This setting is to change the mode of measurement and measure times.

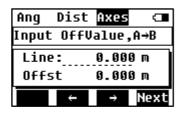

AXES STAKE-OUT

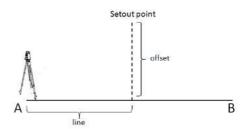
This session is to introduce the stake-out of the point by entering the offset to a baseline. There're 2 options to define the baseline. One is to define by station point and a known bearing angle (0°00'00"), one is to define by two new points.

Press F1or F2to select.

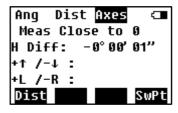


6.1 Stake Out of One Side on the Axes



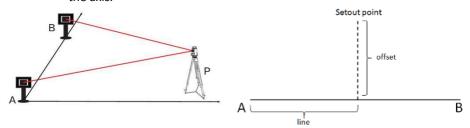

Step 1: Set the theodolite at Point A.

Step 2: Aim at the prism which is set at Point B and press OSET to set it to 0°. Then press NEXT to enter the next screen.


Step 3: Input two offset value.

Line	Offset value along the axes from Point A to B. (it is a designed value)
Offst	Offset value perpendicular to the axis. (it is a designed value)

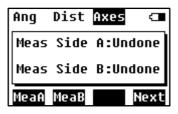
Step 4: Press F1 to measure. Move the prism according to the indications on the screen, until all the values on the screen are 0.

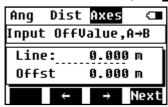


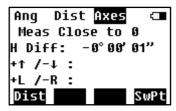
H Diff the angle difference between "the HA of staking out point" and "the HA of

	current target"
+↑/-↓	offset of perpendicular to the axis
+L/-R	offset along the axis
SwPt	Return to input offset to start a new
	point.

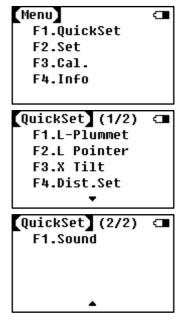
6.2 Stake Out of Any Point


Stake out in this mode can set the theodolite at any point outside the axis.

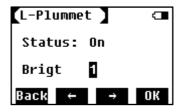

Select F2.


Step 1: Measure the distance to Point A and B, then press F4 to next step.

Step 2: Input the line and offset values, press F4to next step.



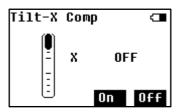
Step 3: Press F1 to measure. Indicate the poleman to move the prism according to the indications on the screen, until all the values on the screen are 0.


QUICK SETTING

Press Menu key and F1 Quick set to enter this page. There're 5 settings in QuickSet: laser plummet, laser pointer, compensation on X axes, distance setting, backlight and sound.

7.1 Laser Plummet

Press F1 for laser plummet setting. You can also set the brightness grade for the plummet.



7.2 Laser Pointer

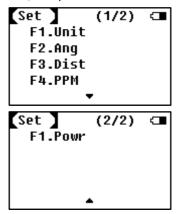
Press F2 to turn on laser pointer.

7.3 Compensation on X axis

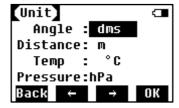
Turn on and off the compensation on X axis, and check the tilt value.

7.4 Distance Setting

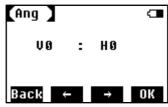
Set the prism constant, measure mode and measure times under the distance setting page.


7.5 Backlight and Sound

Set the screen backlight, beep of pressing key, crosshair backlight.


SETTING

Press Menu, then F2 to enter the SET page. It covers 5 settings: unit, angle, distance, PPM, and power set.

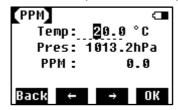

8.1 Unit

Set the units of angle, distance, temperature and air pressure.

8.2 Angle

Set the display of vertical angle.

8.3 Distance

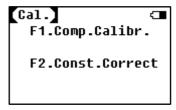

Set the scale and height for distance measurement.

Scale	Scale factor
Ht	Elevation of the station point

8.4 PPM

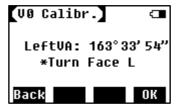
Set parameters related to temperature and air pressure.

8.5 Power


Set the sleep time/ off time. Check the battery capacity directly.

SlepTime	Time to enter to sleep mode if no		
	operation.		
Off Time	Time to power off if no operation.		

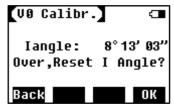
9. CALIBRATION


Press F3 Cal. Into the calibration mode. This program is to calibrate the errors and correct additive constant.

9.1 Calibrate i Angle

i angle is also referred to the vertical index difference.

Step 1: On Face Left, collimate the crosshair center in a collimator, and adjust the focus until it is clear. Press OK to proceed to next step.



Step 2: Turn the theodolite to Face Right, and collimate the same crosshair center in the collimator until it is clear. Press OK to proceed to next step.

Step 3: The equipment will show the index difference. Press OK to

confirm and calibrate. Caution: If the difference is too large, the system will suggest resetting the i angle. Press **OK**to continue, or Backto return to the calibration again.

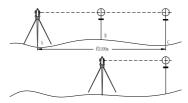
Tips: If necessary, please repeat the calibration of i angle according to the steps above.

9.2 Correction of Additive Constant

Caution: Do not change the constant if unnecessary.

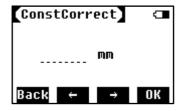
The additive constant is relatively stable. We suggest inspecting it once or twice a year. You can follow the following steps to do a quick inspection and correction.

Inspection

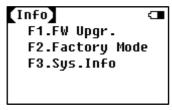

Step 1: Set the instrument on a flat ground, mark it as Point A. Along the vertical crosshair, mark Point B and C with a space of 50m on the same line. Set reflectors on Point B and C precisely.

Step 2: Set the temperature and air pressure in the system, and measure the horizontal distances of AB and AC accurately.

Step 3: Set the theodolite on Point B and level it precisely. Measure the horizontal distance of BC accurately.


Step 4: Now we can get the additive constant by the following formula.

K should be close to 0. If |k| > 5mm, the theodolite should be delivered to professional workshop which has standard baseline to calibrate.


Correction

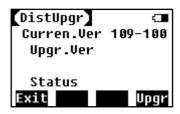
According to the formula, input the K value in the following screen.

10. INFORMATION

Press F4 Info in the menu page. Here you can upgrade firmware and check the system information.

10.1 Firmware Upgrade

Firmware upgrade includes angle system and distance system. Press F1 to enter the firmware upgrade page.

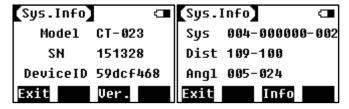

It is required to connect the theodolite with computer via RS232 serial interface.

Angle Upgrade

Distance Upgrade

System Upgrade

Hold key 1, and press power to enter to system upgrade. Follow the operation on PC upgrading software.


10.2 Factory Mode

Press F2 to enter the factory mode and reset to default setting. Input the password to proceed.

10.3 System Information

Press F3 to check the system information. The model name, serial number, device ID, system version, distance version and angle version shown on it.

11. SPECIFICATION

TELESCOPE				
Image	Erect			
Magnification	26.5X			
Aperture (telescope)	40mm			
Aperture (distance)	45mm			
Resolution	3"			
Field of View	1°30″			
Min. Focusing	1.5m			
Length	155mm			
LASER				
Wave Length	635 <u>+</u> 20nm			
Class	Ш			
Diameter of Laser Dot	5mm/100m			
Accuracy	10"			
ANGLE				
Туре	Absolute Encoding			
Diameter of Disk	79mm			
Detecting Method	Horizontal: dual; Vertical: dual			
DISTANCE				
Reflecting Target	Single Prism			
Range	300m			
Accuracy	<u>+</u> (3mm+2ppm*D)			
Time	Continuous: 0.35s; Fine: 1.5s			
Atmospheric Correction	Manual input, auto correct.			
Prism Constant Corr.	Manual input, auto correct.			
LEVEL				

Plate Vial	30"/2mm			
Circular Vial	8'/2mm			
COMPENSATOR				
Туре	Single Axis			
Range	<u>±</u> 3′			
Resolution	3"			
LASER PLUMMET				
Туре	Class II visible red laser			
Wave of Length	635 <u>+</u> 20nm			
Accuracy	1.5mm (when HT 1.5m)			
Diameter	2.5mm (when HT 1.5m)			
DISPLAY				
Туре	160*96 Dot Matrix			
Size	2.7 inch			
POWER				
Туре	Li-on			
Voltage	7.4V			
Working Time	8h			
ENVIRONMENT				
Working Temperature	-20°C - +50°C			
SIZE & WEIGHT				
Size	165 X 160 340 mm			
Weight	4.7kg			

12. ERROR CODE

Category	Message		
Angle Problem	UpperV ERR		
	LowerV ERR		
	HL ERR		
	HR ERR		
	V CCD Error		
	H CCD Error		
	V Rotate ERR		
	H Rotate ERR		
	ERR32	Dimmer motor error	
	ERR33	High-voltage error	
Distance Problem	ERR35	Internal light path error	
	ERR38	Internal light path error	
	ERR41	Temperature sensor error	

When you see error message, please power on the theodolite again. If it is not solved, return to your local dealer for further inspection.